Molecular epigenesis, molecular pleiotropy, and molecular gene definitions.

نویسنده

  • Richard M Burian
چکیده

Recent work on gene concepts has been influenced by recognition of the extent to which RNA transcripts from a given DNA sequence yield different products in different cellular environments. These transcripts are altered in many ways and yield many products based, somehow, on the sequence of nucleotides in the DNA. I focus on alternative splicing of RNA transcripts (which often yields distinct proteins from the same raw transcript) and on 'gene sharing', in which a single gene produces distinct proteins with the exact same amino acid sequence. These are instances of molecular pleiotropy, in which distinct molecules are derived from a single putative gene. In such cases the cellular and external environments play major roles in determining which protein is produced. Where there is molecular pleiotropy, alternative gene concepts are naturally deployed; molecular epigenesis (revision of sequence-based information by altering molecular conformations or by action of non-informational molecules) plays a major role in orderly development. These results show that gene concepts in molecular biology do, and should, have both structural and functional components. They also show the need for a plurality of gene concepts and reveal fundamental difficulties in stabilizing gene concepts solely by reference to nucleotide sequence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward a molecular understanding of pleiotropy.

Pleiotropy refers to the observation of a single gene influencing multiple phenotypic traits. Although pleiotropy is a common phenomenon with broad implications, its molecular basis is unclear. Using functional genomic data of the yeast Saccharomyces cerevisiae, here we show that, compared with genes of low pleiotropy, highly pleiotropic genes participate in more biological processes through di...

متن کامل

Molecular evolution , mutation size and gene 1 pleiotropy : a geometric reexamination

The influence of phenotypic effects of genetic mutations on the molecular 28 evolution is not well understood. Neutral and nearly-neutral theories of molecular evolution 29 predict a negative relationship between the evolutionary rate of proteins and their functional 30 importance, nevertheless empirical studies seeking relationships between evolutionary rate 31 and the phenotypic role of prote...

متن کامل

Molecular evolution, mutation size and gene pleiotropy: a geometric reexamination.

The influence of phenotypic effects of genetic mutations on molecular evolution is not well understood. Neutral and nearly neutral theories of molecular evolution predict a negative relationship between the evolutionary rate of proteins and their functional importance; nevertheless empirical studies seeking relationships between evolutionary rate and the phenotypic role of proteins have not pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • History and philosophy of the life sciences

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2004